Dialysis Procedures

Dialysis Procedures

- It is simple. There are only 3 procedures:
 - Initiation
 - Monitoring
 - Discontinuation
- Well, maybe not so simple...

Initiation of Dialysis

- Pre Dialysis Safety Checks
- Initiation Procedures
- Immediate Post Initiation Procedures

Predialysis Safety Checks

- Water system
 - Temperature
 - Resistivity
 - Residual disinfectant
- Prescribed Dialyzer & Concentrate
- Dialysis Machine Safety
 - Alarms active
 - Dialysate conductivity &/or pH
- Integrity of Extracorporeal Circuit
- If Dialyzer Reused
 - Check patient's name on label
 - Disinfectant residual test

Predialysis Patient Evaluation

- Physical Parameters
 - Weight BP (stand & sit) Temp
 - Pulse & Resp Complaints
- Evaluate Access Status
 - Signs of infection redness, tenderness, unusual warmth, purulent drainage
 - Patency
 - Graft & AVF: bruit, thrill
 - Catheter: easy aspiration (post disinfection)
 - Direction of flow (identify A & V)
- Follow Universal Precautions
 - Wash hands
 Glove
 Gown
 - Eye protection
 Mask

Initiation of Dialysis

• Graft/Fistula

- Select sites Disinfect
- Anesthetize Insert needles

Catheters


- Disinfect catheter limbs
- Aspirate heparin from limbs
- Evaluate patency

Draw Blood Work

- Prior to administering heparin
- From arterial port
- Administer heparin post draw

Initiate Blood Flow to Dialyzer

- Connect lines
- Start at low BFR

Post Initiation

- Calculate/Apply TMP
 - Fluid gain/ # Hours = UF vol (ml/hr)
 - UF Volume/ UF Coefficient = TMP
 - TMP = V resistance + Neg pressure
- Set machine parameters
 - BFR DFR UFR Alarm limits
 - Dialysate temp
 Heparin Infusion rate
- Patient comfort measures

Charting

Over-riding objectives

• Complete • Legible

Treatment documentation

- Prescribed parameters
- Pre & Post patient assessment
- Vital signs during treatment
- Medications given
- Treatment parameters
 - BFR, DFR, A & V pressures, TMP/UFR
- Patient/machine complications
- Your signature

Monitoring During Treatment

- Detection of Complications
 - Blood Related
 - Dialysate Related
 - Patient Related
- Extracorporeal Circuit
 Pressures
- Anticoagulation
- Treatment Factors
 - Impact on Clearance
- Charting

Blood Side Complications

- Air in Blood Circuit
 - Minor: usual cause is careless set-up, drip chamber level will drop, alarm will sound
- Air Embolism
 - Major: air detector alarm failure
- Blood Loss
- Access Recirculation
- Clotting
- Poor BFR
- Needle Infiltration

Dialysate Side Complications

Dialysate Temperature

- Hypothermia
- Hyperthermia

Hemolysis

 Dialysate temperature, kinked blood lines, formaldehyde in dialysate lines, inadequate water treatment (chloramines, copper, zinc, nitrates)

Crenation

Hypertonic dialysate

Patient Related Complications

- Hypotension
- Hypertension
- Muscle Cramps
- Headache
- Nausea & Vomiting
- Headache
- Fever &/or Chills
- Fistula/Graft Infection, Thrombosis
- Fistula Aneurysm, Psuedoaneurysm
- Central Venous Catheter Infection
- Catheter Thrombosis

- Cardiac Dysrhythymia
- Pericarditis, pericardial effusion, cardiac tamponade
- Dialysis Disequilibrium Syndrome
- First Use Syndrome
- Seizures
- Angina
- Anaphylaxis
- Pruritis
- Steal Syndrome
- Cardiac Arrest
- Dialysis Encephalopathy (Al⁺⁺)

Extracorporeal Circuit Pressures

- Blood Side
 - Elevated Pre Pump Arterial Pressure
 - RBC damage if greater than -250 mmHg
 - Increase indicates obstruction of blood flow into pump
 - Elevated Post Pump Arterial Pressure
 - Increase indicates obstruction of blood flow into dialyzer
 - Elevated Venous Pressure
 - Increase indicates obstruction of blood flow into patient
- Dialysate Side
 - Failure of Negative Pressure pump
- Watch Both Transmembrane Pressure is key

Anticoagulation

Three methods

- Saline flush
 - Flush blood circuit with saline q 30 min
 - No drugs
 - No bleeding risk during or post dialysis
- Trisodium citrate
 - Difficult: requires 2 infusion pumps, 0 Ca⁺⁺ dialysate
 - No bleeding risk during or post dialysis BUT maintaining patient's calcium balance is difficult & risky
 - Citrate is metabolized into bicarbonate
- Heparin

Two Heparin Methods

Systemic

- Method: bolus + constant infusion until last hour
- Objective: maintain ACT 1.5-2.0 baseline

Tight Systemic

- Method: same but lower doses
- Objective: maintain ACT 1.2-1.4 baseline

Treatment Factors: Impact on Clearance 1

Blood Flow Rate

- \uparrow BFR $\rightarrow \uparrow$ small molecule (ex. urea) clearance
- BFR has much less effect on large molecules

Ultrafiltration Rate

- 个 UFR will result in 个 clearance, via "solute drag"
- Mainly involves larger molecules
- Minimal effect on total clearance

Dialysate flow rate

- ↑ DFR will ↑ clearance
- Minimal effect on total clearance If BFR > 350, hi flux dialyzer, 500 DFR \rightarrow 800 DFR = C urea \uparrow 5-10%

Treatment Factors: Impact on Clearance 2

Anticoagulation

• Clotting reduces available membrane surface area, thus clearance

Treatment Time

- Longer time = ↑ clearance
- Shorter time = \downarrow clearance $5 \min \downarrow per Tx X 156 Tx/yr = 780 \min or > 3 dialysis/yr$

Access Recirculation

- Causes: needles too close, access stenosis, cardiopulmonary recirculation
- Result: freshly dialyzed blood mixes with uremic blood being drawn into the arterial blood line

Discontinuation

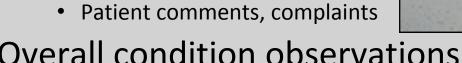
- Termination of Treatment
- Needle Removal/Catheter Care
- Post Dialysis Patient Assessment
- Documentation
- Post Dialysis Machine Care

Termination of Treatment

- Discontinue Heparin infusion
 - Per unit protocol (usually 30-60 min pre D/C)
- Chart patient & machine parameters
- D/C TMP
- Draw post dialysis blood samples
 - Reduce BFR to 100 ml/min, wait ≈ 15 seconds
 - Alternative: draw several minutes post dialysis
- Return blood to patient
- Check patient's BP before disconnection
 - In case further fluid infusion is required

Needle Removal

- Remove one needle at a time
- Withdraw at same angle as insertion
- Apply pressure over vessel (not skin) insertion site
- Amount of pressure matters
 - Too little: prolonged bleeding, hematoma formation
 - Too much: clotted access
- Clean & dress site after bleeding stops


Note: If fistula clamps used, should follow strict protocol because application of proper pressure is difficult.

Catheter Care

- Prior to removing dialysis lines, disinfect catheter ports with:
 - Providone iodine or
 - Chlorhexadine gluconate
- Flush each catheter lumen with normal saline
- Instill heparin into each lumen
 - 5,000-10,000 units per lumen is most common dosage range
 - NOTE: volume of heparin should just barely exceed lumen volume
- Place fresh sterile dressing over catheter site
- Label catheter site
 - "DO NOT FLUSH"
 - # units heparin per lumen
 - Date and initials of staff member

Post Dialysis Patient Assessment

- Vital signs
 - BP sitting & standing
 - TPR
- Physical assessment
 - Heart & lung sounds
 - Edema
 - Weight (fluid loss)
- Vascular access
- Patient symptoms

- Overall condition observations
 - General condition, behavior, mental status

Documentation

- Dialysis data
 - Time stopped
 - Volume of rinseback saline
 - Blood loss, if any (include clots in dialyzer, drip chambers)
- Patient condition
 - Vital signs, physical assessment
 - Overall condition, including vascular access
- Special instructions to patient, if any
- Time & method of departure

Post Dialysis Machine Care

- Disconnect and rinse concentrate lines
- Remove dialyzer & bloodlines
 - Dispose in hazardous waste container
 - If to be reused
 - Ensure filled with saline or heparinized saline, per unit protocol
 - Ensure properly labeled with patient ID data
 - Deliver to reuse area within 10-15 min post dialysis
- Remove other disposables
 - Dispose in hazardous or non-hazardous waste container, as appropriate
- Remove & disinfect non-disposables (ex. clamps)
- Clean & disinfect outside of machine

Dialysis Procedures

Summary

- Initiation
- Monitoring
- Discontinuation

It is not simple!

YOU are the key.

